
Irreversible kinetic coagulations in the presence of a source

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 L801

(http://iopscience.iop.org/0305-4470/20/12/009)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 20 (1987) L801-LSO5. Printed in the U K  

LETI'ER TO THE EDITOR 

Irreversible kinetic coagulations in the presence of a source 

Hisao Hayakawa 
Department of Physics, Faculty of Science, Kobe University, Kobe 657, Japan 

Received 6 May 1987 

Abstract. The Smoluchowski equation with a source is analysed. Universal power-law 
distributions of cluster size are obtained in non-gelling and gelling systems. 

Coagulation is an irreversible physical process in which a number of basic units 
(monomers) stick together to build clusters. There are two fundamental aspects in 
such processes: firstly the geometry, i.e. structures of aggregated clusters, and secondly 
the kinetics, such as time evolution of cluster size distribution. Recently, the first aspect 
has been very much studied (Witten and Sander 1981, Meakin 1983, Kolb et a1 1983) 
due to the introduction of the mathematical concept of fractals (Mandelbrot 1982). 
However, we have few analytic results for this first aspect. The second aspect has an 
important role as a bridge between an analytic description by the kinetic equation and 
experimental data or numerical simulations. 

In many cases, the coagulation process is controlled by diffusion and reaction: 
both having characteristic times, f d  and t ,  respectively. The diffusion time t d  is the 
typical time needed for clusters to come close together. The reaction time t ,  is the 
time taken to form a chemical bond between contacted clusters. If one of these 
timescales is much greater than the other, it is possible to find a simplified kinetic 
description on the timescale of the slower process. We refer to two extreme cases as 
the diffusion-limited cluster aggregation ( DLCA) if f d  >> t ,  and the reaction-limited cluster 
aggregation ( RLCA) if t d  << t , .  In both cases, time evolution of clustering processes can 
be described by the Smoluchowski equation (Smoluchowski 1916,1918). This equation 
has been widely used to describe kinetics of aggregation in many fields of science, for 
instance, coagulation of aerosol and colloid (Friedlander 1977), polymerisation (Ziff 
1980), antigen-antibody aggregation (Johnston and Benedek 1984), cluster formation 
of galaxies (Silk and White 1978) and red blood cell aggregation (Samsel and Perelson 
1982). 

Coagulation processes with creation of monomers are often observed in aerosol 
systems (Drake 1972). Aerosols are created by various natural processes, such as 
smoke particles from fires, sand and dust storms, condensation of water vapours in 
the atmosphere, nucleation through chemical reactions and meteoritic dust. Although 
the Smoluchowski equation has been widely investigated (as reviewed by Ziff (1984) 
and Ernst (1985, 1986)), we have only a few results for the coagulation equation with 
injections (Klett 1975, Lushinikov and Piskunov 1976, Lushinikov et a1 1981, White 
1982, Crump and Seinfeld 1982). In this letter, we investigate a coagulation system 
with a permanent source by solving the Smoluchowski equation. 
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The generalised Smoluchowski equation involving both source and sink is represen- 
ted by 

m 

c k ( t ) = f  c K l j c t ( t ) c j ( t ) - c k ( t )  c K k , C j ( r ) + z k - R k C k ( r ) *  (1) 
r + j = k  J = 1  

Here ck( t )  denotes the number of clusters of size k (k-mers) per unit volume and K , ,  
the coagulation kernel or rate coefficient, denotes the probability of coalescence of an 
i-mer and a j-mer in unit time. We introduce I k  and Rk as the permanent source and 
sink, respectively. The effect of the sink often appears in real physical processes, for 
instance, gravitational sedimentations where Rk is proportional to k-2’3 (Klett 1975). 
When the sink term appears in equation (l),  Crump and Seinfeld (1982) proved the 
following statement: if the coefficients of equation (1) satisfy the relations K I J S  
K ( Rk 3 R k P ,  R > 0, p > 0 and a < f, then the steady-state solution ck has a tail 
that decays faster than any power of cluster size. In the absence of a sink, we know 
of a steady-state solution obeying a power law in the case of K ,  = K(zj)’ (Klett 1975, 
White 1982). In this letter, we solve equation (1) with K ,  = K (  i”j” + iYj”) and R = 0. 
When a sol-gel transition (or gelation) occurs, i.e. an infinite cluster emerges at a 
critical time, we obtain a self-consistent post-gel solution. If there is no gelation (in 
a non-gelling system), we derive a steady solution obeying a power law of cluster size. 

Most of the coagulation kernels used in the description of physical phenomena are 
homogeneous functions of i and j, at least for large cluster sizes (Ernst 1985, 1986, 
van Dongen and Ernst 1984). We restrict ourselves to such kernels and we characterise 
K ,  by exponents p and v 

K ,  = i ” j ”  j 2 i  (2a)  

Kat ,a j  5 a”Kij (26) A = p + U, a =constant. 

Since the average number of reactive sites on a cluster cannot increase faster than its 
size, we impose the physical restrictions A G 2 and v d  1 (van Dongen and Ernst 1984). 
In this case, some properties of ck( t )  are determined by the parameter p. Ernst (1985, 
1986) distinguished three classes: p > 0 (class I), p = 0 (class 11) and p < 0 (class 111). 
A typical example of class I is RLCA, such as polymerisation, and an example of class 
111 is DLCA, occurring in aerosol coagulation. 

To simplify our discussion, we restrict ourselves to the simplest case satisfying (2a)  
and (2b). Then, K , ,  I k  and Rk are defined as 

K , J = K ( i p j u + i ” j f i )  ( 3 a )  

= I6k 1 (36) 

Rk = Rk’ (3c) 
where K, I and R are constants. From equation (3a),  a restriction v d  1 is replaced 
by max(p, U )  Q 1. 

First, we consider the asymptotic form of cluster size for a large time limit without 
gelation. As time goes to infinity, the time evolution of the cluster size distribution 
begins to cease, as the system approaches a steady state. Therefore, the Smoluchowski 
equation is reduced to the following form in a large time limit: 
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We substitute (2a) and (2b) into ( 4 )  

where M ,  is the nth moment of ck 

M,, = knCk. 
k 

In order to solve equation ( 5 ) ,  we introduce a generating function f n ( x )  = x k  k"ck e-kx 
which has the following behaviour for small x (Ziff er a1 1982, Hendriks et al 1983): 

f , ( x ) -  M , + a ( n ) x " ( " )  (7) 

where a( n) is positive because of the continuity of the generating function at x = 0. 
We are interested in the case when a ( n )  is not equal to unity. In such a case, M , + ,  
is divergent and the second term of equation (7) expresses the leading singularity of 
f n ( x )  at x = 0. Multiplying e-kx and 1 by equation (5) and summing them over all k 
and subtracting one from the other, we obtain 

O =  K(fp-Mp)(fu-M,)+I(e-"-l)-R(fy-My). (8) 

I x -  K a ( p ) a ( v ) x " ( p . ' ) + " ( u ) -  Ra(  y)x" (" ' .  (9) 

Substituting (7) into (8) we obtain 

If R is not equal to zero, then a ( y )  = 1 for any a ( y )  < a ( p )  + a( v). Thusf,(x) contains 
no singularity in the second term of equation (7). The regularity of the generating 
functions and the convergence of all moments can be proved by the inductive method 
under the condition y 5 max(p, v) (Hayakawa 1987). Namely, a solution of ( 4 )  does 
not obey any power of k, which is consistent with the result of Crump and Seinfeld 
(1982). If R =0, then the generating functions are not regular and the following 
relations are derived: 

a ( p )  + a ( v )  = 1 K a ( p ) a (  v) = I.  (10) 

When a ( n )  is not unity, equation (7) is identical to (see Hendriks er a1 1983, Robinson 
1951) 

k"Ck = a ( n ) k - " ' " ' / r ( a ( n ) )  as k + m  (11) 
where r( x) denotes a gamma function. From equation (1 1) for p and v, we can see 
that a ( p )  + p = a( v) + v. This result and equation (10) lead to 

The distribution of cluster size finally yields 

where a = t ( v - p ) .  There are some restrictions on p and v. The divergence of a ( p )  
and a(  v) leads to p, v >  -1 and Ip - v (  < -1. A finite total number of clusters means 
that p + v > -1. By summarising the above restrictions, we can apply the expression 
of equation (13) to the inner region of the square in figure 1, i.e. Ip + V I  -= 1 and 
lp - V I  < 1. This square belongs to the non-gelling region according to the theorem of 
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Figure 1. Our solutions in a parameter (p ,  v )  space. Non-gelling steady-state solutions 
are inside the square ACDE in which border lines are not included. Self-consistent post-gel 
solutions are inside the triangle ABC where AB and BC are included and CA i s  excluded. 
Steady solutions on the straight line MN have already been obtained by White (1982). 
Time-dependent solutions at A, B and 0 were obtained by the Russian group (Lushnikov 
and Piskunov 1976, Lushnikov er al 1981) who proved that there is no steady-state solution 
at A. 

White (1980). (White proves the existence of global initial solutions and the conver- 
gence of all moments at finite time in the case of K i j G  K ( i + j ) . )  When there is no 
injection, i.e. I = 0, we obtain only a trivial solution from equation (13). Therefore, 
we conclude that the balance between injection and coagulation leads to an asymptotic 
power-law distribution of cluster size. The Brownian coagulation in the continuum 
region with K ,  = K ( i l l 3  + j ” 3 ) (  i - ’ 1 3 + j - ’ 1 3 )  (Chandrasekhar 1943) is the most impor- 
tant in colloidal and aerosol science. We can apply our method directly to this 
coagulation and obtain an asymptotic power law of cluster size as ck - k-3’2. In a time 
evolution of cluster size, the tail obeying the power law can be observed in the 
intermediate range of cluster size, because equation (4) holds approximately for 
suitable k. 

We also get a self-consistent post-gel solution at finite time by the same method. 
We use two generating functions: f n ( x ,  t ) = Z k  k n c k ( t )  e-kx and g(x, t )  = z k  c k ( t )  e-kx, 
If  R = 0, then we obtain the solution in the same manner: 

A finite total mass of clusters at finite time leads to p + v > 1. The conditions p, v > 0 
and 1p - V I  < 1 are derived by the divergence a ( p )  and a(  v). Equation (14) expresses 
a post-gel solution, because non-zero &I, - I means a violation of mass conservation 
in the sol phase. This post-gel solution is essentially the same as that of no-injections 
obtained by Hendriks et a1 (1983). 
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We summarise our results. (i) The balance between injection and coagulation leads 
to an asymptotic power-law distribution of cluster size for the kernel K, = K ( i” j”  + i”j) 
in a non-gelling system. Our conclusion supports the results of a river model obtained 
by Takayasu and Nishikawa (1986) and a one-dimensional ballistic model by Hayakawa 
et al (1987). (ii) When gelation occurs, the effect of injection is not essential. We 
emphasise the result that ck= k-(3+p+”)’2 is a universal form in both (i) and (ii). There 
are many situations involving physical injections and negligible removals in nature. 
Our analysis suggests an origin of the often observed power-law distributions of cluster 
size. The power-law distribution represents one of the characteristic aspects of fractals. 
We believe our results to be a first step towards explaining why we often see fractals 
in nature. 

The author is grateful to Dr H Takayasu for suggesting this problem and for Mr M 
Yamamoto for stimulating discussions. He also thanks Professor 0 Nagai for a critical 
reading of the manuscript. 
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